
What Did Qubits Ever Do for Me?

An Answer for CS2 Students

Robert Frohardt
Department of Computer Science
University of Colorado at Boulder

UCB 430
Boulder, CO 80309-0430

303-547-8023

frohardt@colorado.edu

Yingdan Huang
Department of Computer Science
University of Colorado at Boulder

UCB 430
Boulder, CO 80309-0430

303-489-8934

Yingdan.Huang@colorado.edu

Michael Main
Department of Computer Science
University of Colorado at Boulder

UCB 430
Boulder, CO 80309-0430

303-723-9527

main@colorado.edu

ABSTRACT

We show how to teach and motivate small quantum computer

programs as a supplemental topic in a CS2 data structures class. A

traditional example such as Shor’s factorization [8] could be used,

but we focus instead on the area of quantum pseudo-telepathy

games. Examples in this area require less mathematics than

factorization and are easy to motivate with short proofs that the

problems solved have no solutions in a world of classical

computing. A CS2 class is a good location to present this work

because of the matrix storage and manipulation that’s required.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education – curriculum.

I.m [Computing Methodologies]: Miscellaneous.

General Terms
Algorithms.

Keywords
CS2, quantum computing, quantum pseudo-telepathy.

1. I'TRODUCTIO'
Undergraduate students are enticed by new developments in

science and computing. For computer science students, one

extraordinary area is quantum computing. The students’ interest

comes directly from the remarkable counterintuitive results—but

this counterintuitive nature and some advanced mathematics

makes it seem unmanageable to introduce the ideas to beginning

students.

Nevertheless, there are aspects that are appropriate for a typical

CS2 class. This paper describes the approach we took from the

introduction of quantum computing to a comprehensive assign-

ment that involves implementing a matrix class for simulating

quantum computations. We include specific techniques for

explaining the necessary concepts of qubits, superposition,

interference and quantum entanglement using a particular problem

in the area of quantum pseudo-telepathy. The CS2 students can

understand the proof that the problem is unsolvable using

classical computing. Next, they quickly gain a qualitative

understanding of the quantum computing solution—particularly

the aspect that Einstein objected to as a “spooky action at a

distance.” With an additional introduction of the matrix

representation of quantum computer programs, the students can

implement a simulation of the quantum computing solution using

a Kronecker product.

2. THE THREE-STO'ES PROBLEM
One way to motivate any new technique is to present a problem

that simply cannot be solved without the technique. Many such

problems in quantum computing are characterized as pseudo-

telepathy games—a name that was chosen because it appears that

the problems cannot be solved without instantaneous telepathy.

(See, for example, the survey by Brassard, et. al. [2].) In our CS2

class, we begin by presenting one such game derived from an

example of Greenberger, et. al. [3].

The game involves three astronauts and three aliens, so we pick

three students from our class—Alice, Bob and Charlie—for the

astronauts and three conveniently available teaching assistants for

the aliens. The entire class is told the rules ahead of time:

1. Prior to the start of the game, the astronauts may meet to

devise strategies and exchange whatever objects they

may need.

2. The three aliens will then take the three astronauts to

planet around different far-flung stars.

3. Once at the stars, the aliens will give one colored stone

to each astronaut. There is also a guarantee: Either the

stones are all blue stones (the all-blue case), or there is

one blue stone and two red stones (the 1-2 case).

4. At this point, each astronaut must decide whether to

keep his or her stone or to give it back—and they must

do so quickly (without enough time to communicate at

the speed of light).

5. In the all-blue case, the game is won if the astronauts

keep an odd number of stones; in the 1-2 case, the game

is won if the astronauts keep an even number of stones.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ITiCSE 2010, June 26–30, 20010, Bilkent, Ankara, Turkey.

Copyright 2010 ACM X-XXXXX-XXX-X/XX/XXXX…$5.00.

At this point, we have our students play the game a few times

(although, because of time constraints, the students are taken to

the far-flung corners of the classroom instead of to stars). Perhaps

the students win sometimes, perhaps they lose—it doesn’t matter

because we’re just trying to understand the rules. Then we pose a

task to Alice, Bob and Charlie: Come up with a strategy that will

always win, regardless of whether you’re given all blue stones or

one of the 1-2 cases. This challenge is presented at the end of a

lecture, and the class is sent away to think.

At the start of the next lecture, we let them try a few ideas, but the

classroom easily shoots them down.

“Let’s always give back blue stones and keep red ones,” the

students might propose—but that won’t work in the all blue case.

A more complicated strategy might have Alice, Bob and Charlie

each do something different with their stones, but each suggested

strategy has at least one situation where it fails. This kind of

strategy—where Alice, Bob and Charlie each decide ahead of time

what to do with each kind of stone—is called a deterministic

strategy. We ask the students to figure out the number of different

deterministic strategies, and to justify their number. Some

students might come up with a table like this, where a 0 means

that an astronaut gives back the stone and a 1 means it’s kept.

Each row of the table represents a different possible deterministic

strategy:

What does Alice

do with…

What does Bob

do with…

What does Charlie

do with…

a blue

stone

a red

stone

a blue

stone

a red

stone

a blue

stone

a red

stone

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

…and so on down to…

1 1 1 1 1 1

We could go through the table row-by-row and find a situation

where each strategy fails. For example, the first row (where every

stone is always given back) fails if the aliens give the astronauts

three blue stones. The row-by-row approach will successfully

shoot down all 64 strategies, but it is time-consuming and there’s

a better, generalized proof that shoots down all strategies at once.

For the proof, we give a name to each of the six bits of any given

row from the table of possible strategies. The bit in the first

column is ABLUE; the second column is ARED; the third column is

BBLUE;and so on. For the given strategy to work in the all blue

case, we must have:

ABLUE + BBLUE + CBLUE = some odd number

And for the three different 1-2 cases to all work, we must have:

ABLUE + BRED + CRED = some even number

ARED + BBLUE + CRED = some even number

ARED + BRED + CBLUE = some even number

This gives us four equations. If one of the equations fails, then the

strategy fails for the corresponding case. So, an always-successful

strategy must have all four equations true. With this in mind, ask

the students to add the left and right sides of all four equations

and simplify things to come up with one total equation. They’ll

get something like this:

2ABLUE + 2ARED + 2BBLUE + 2BRED + 2CBLUE + 2CRED

= some odd number

This one equation must be valid if the given strategy is always

successful. But the left side of the equation is even and the right

side is odd—hence no deterministic strategy will always win the

game.

The purpose of this little proof is to convince the students that

there’s no strategy that wins all the time. Some student may

wonder about nondeterminism. “How about if we wait until we

get the stones and then roll some dice to determine whether to

give back the stones?” This is not a deterministic strategy, but it

fares no better because the dice rolls just randomly select one of

the flawed deterministic strategies. Sometimes the dice rolls might

be lucky and win, but the dice don’t always win.

Another possibility is for the astronauts to communicate with each

other after they get their stones. “Hey, I’ve got a blue stone,”

Alice can shout to Bob. “What should I do with it?” If this were

allowed, then a winning strategy is not hard to device, but such

communication is forbidden. In the real test, the astronauts are at

far-flung stars, and they will have to make their decisions

quickly—much more quickly than speed-of-light messages could

be sent and received.

And now the amazing part: It is possible to create some quantum

computer programs that the astronauts can run after they get to

their stars. The programs that they run depend on the colors of

their stones, and the outputs of the programs direct their actions in

a way that guarantees a win.

3. QUBITS
It’s time to introduce quantum computing, starting with the basic

data in a quantum program. Our students already know about

ordinary bits. “A qubit is similar,” we say. “It’s a memory value,

and when we examine it, it’s value is either 0 or 1. But in the time

before we examine a collection of qubits, they may be in a

remarkable state called a superposition of observable states.”

For example, suppose we have three qubits. The physicists

represent one possible superposition this way:

0.7|111〉 + 0.5|100〉 − 0.5|011〉 + 0.1|010〉
Each term in the expression has an amplitude (such as 0.7) and a

triplet of bit values (such as |111〉). The square of the amplitude

tells the probability of finding the triplet when the bits are

examined. In this case, we have:

• 0.72 = 49% chance of finding three 1’s (|111〉)
• 0.52 = 25% chance of finding |100〉
• (−0.5)2 = 25% chance of finding |011〉
• 0.12 = 1% chance of finding |010〉

Physicists have proposed and built a number of different ways to

implement small collections of qubits. The important point is that

when a quantum computer program runs, the amplitudes attached

to various triplets change. At the end of the program, we examine

the qubits. The probability of finding any particular triplet of

qubits depends on the amplitude attached to the triplet at that

time.

How can this help with the three-stone problem? Before the

astronauts leave the Earth, they’ll set up a three-qubit quantum

computer. Each astronaut takes one of the three qubits with him to

the stars—perhaps carrying it in a contraption called an ion trap,

which is one way to implement qubits. When each astronaut is

shown the color of his stone, he uses that color to select one of

two programs—the blue program or the red program—and he

runs that program on his qubit. For example, if Alice is given a

red stone, she runs the red program on her qubit and then looks at

the qubit. A zero qubit tells her to give the stone back; a one

means to keep her stone. The other two astronauts do the same.

Because of a property called quantum entanglement, when each

astronaut runs a program it changes the amplitudes on all eight of

the triplets in a mathematical way that we’ll see in a moment. This

is part of quantum mechanics that Einstein never fully accepted.

He called it a “spooky action at a distance”1 and spent much effort

devising thought experiments to illustrate its fallacy—but

experiments in the 1980s showed that entanglement occurs

exactly as predicted by quantum mechanics.

We’ll see our astronauts’ blue and red programs in a moment, but

for now, you should know this:

When the astronauts run their programs, the amplitude on any

incorrect triplet becomes zero.

For example, if they were given all blue stones and they each run

their blue program, then the amplitudes on |000〉, |011〉, |101〉 and
|110〉 all become zero. (Those are the four combinations that lose

in the all-blue case.) Hence, when they go to look at their three

qubits, they always find a winning combination.

4. QUA'TUM COMPUTER PROGRAMS
The presentation could be stopped here. But if you’ve used some

previous programming examples involving complex numbers and

matrices, you can continue to show exactly what the quantum

computer programs look like.

The complex numbers and matrices are needed because the

amplitudes that we’ve already seen may be any complex number,

and these amplitudes are usually arranged into a single vector.

We draw the vector as a column vector in which the columns’

labels are the triplets, like this:

111

110

101

100

011

010

001

000

0

5.0

0

0

5.01.0

0

0

7.0

























−

+ i

In this example, the triplet |000〉 has an
amplitude of 0.7, meaning that the

probability of finding that triplet is 0.72 =

49%. Notice that the triplet |011〉 has a
complex number, 0.1 + 0.5i, for its

amplitude. For a complex amplitude, the

Nobel laureate Max Born proposed the rule

that the probability is the sum of the squares

of the coefficients for the real and imaginary

parts (0.12 + 0.52 = 26% for our example).

The advantage of arranging the amplitudes in a vector is that

quantum computer programs can then be mathematically

expressed as a certain kind of matrix.

1 “spukhafte Fernwirkung”—from a letter that Einstein wrote to

Max Born on March 3, 1947.

A superposition of n qubits is represented as a column vector of

height 2n. And a quantum computer program to manipulate n

qubits is always a unitary matrix of size 2n × 2
n.

Our students haven’t seen unitary matrices at this point, so we

start by explaining the conjugate transpose of a matrix (obtained

by transposing the matrix and then replacing each entry a+bi with

its complex conjugate a−bi). For any matrix U, this gives a new

matrix U
†
—and the definition of a unitary matrix requires that U

†

is the matrix inverse of U. We give a small example that will also

arise later in the presentation:

U = 





− 221
221

//
//
i

i
 U

† = 




−

22

2121

//
//
ii

UU
† = U†

U = 





10

01

As a larger, but still simple, example, we ask our students to

compute how the 3-qubit quantum system given above changes

when we run this particular program (an 8 × 8 unitary matrix):























00001000

00000100

00000010

00000001

10000000

01000000

00100000

00010000

The answer is obtained by a matrix multiplication:























00001000

00000100

00000010

00000001

10000000

01000000

0000000

00010000

1

























−

+

0

5.0

0

0

5.01.0

0

0

7.0

i
=

























+

−

i5.01.0

0

0

7.0

0

5.0

0

0

After running the program, the probabilities of finding various

triplets have changed according to the rules of matrix

multiplication.

The students inevitably want to know why quantum computer

programs are unitary matrices. One honest answer is that

physicists such as Born simply found that this mathematics

provides the correct results for experiments with quantum

systems. Moreover, modern-day physicists and computer

scientists are now able to build small collections of qubits and the

hardware that enacts any possible unitary matrix to manipulate the

system. A variety of different physical mechanisms are used, such

as the ion trap in 2008 that achieved eight qubits via calcium ions

confined in electromagnetic fields. We provide some reading on

this implementation [7], but the main emphasis now becomes a

data structures assignment to simulate the action of the particular

quantum computer programs that the astronauts can use to solve

the three-stone problem.

5. THE ASTRO'AUTS’ PROGRAMS
For the three-stone problem, the starfaring astronauts begin

(before leaving Earth) by creating a system of three qubits that is

initially in this state:

111

110

101

100

011

010

001

000

2
1

21

/

/

0

0

0

0

0

0

























If the astronauts were to measure the qubits

right away, there would be a 50%

probability of finding |000〉 and 50%

probability of finding |111〉. But, of course,
they don’t measure the qubits right away.

Instead, each astronaut takes one qubit to a

far-off star. When each astronaut is given a

stone, he or she chooses a program to run

based on the color of the stone. There will

be three programs in all (one run by each

astronaut on his or her qubit).

The combined effect of the three astronauts running their three

programs will change the amplitudes on the triplets according to

some 8 × 8 matrix. For example, let’s look at the case where they

are all given blue stones. The effect of all astronauts running their

blue programs is given by this quantum computer program:



























−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1

The scalar, 8
1 , simply means that each of the matrix entries is

multiplied by this amount. When this program is applied to the

starting state, the result is:

























=



















































−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

2/1

0

0

2/1

0

2/1
2/1

0

0

0

0

0

0

0

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1

2
1

21

/

/

As promised for this situation of all blue stones, the final state has

zero values for the triplets |000〉, |011〉, |101〉 and |110〉. Hence, the
only triplets that the astronauts will ever see are ones where they

keep an odd number of stones, and they are guaranteed to win the

game!

The students will have questions now.

Why did the astronauts create that particular starting state? To

some extent, the answer to this questions is contrived. The

designers of this game explicitly created it so that it would have

no solution in the world of classical physics, but that it would

have a quantum computing solution that started from that one

particular starting state.

Just how did you figure out that the combined effect of running

three blue programs would be that matrix? For this question , we

need to know about Kronecker products—a mathematical

construct named after the 19th century German mathematician

Leopold Kronecker, though he was not the first to use it [4].

6. THE SPOOKY MATHEMATICS OF

KRO'ECKER PRODUCTS
To finish the presentation, we need to show how the 8 × 8 matrix

is constructed from three separate programs that the astronauts run

on their three separate qubits.

The three astronauts and their qubits are widely separated, which

has a consequence: it is no longer possible to manipulate the

qubits with an arbitrary unitary matrix. Instead, each astronaut

must run a program for one qubit on his or her qubit. These

matrices for manipulating a single qubit are 2 × 2 unitary matrix.

Now, here’s the entanglement part that Einstein found spooky:

When the three astronauts run their separate 2 × 2 matrices on
their individual qubits, the result on the entire triplet is computed

by an 8 × 8 matrix that is formed from the smaller matrices using
the mathematical operation of Kronecker product.

Our students have not previously seen Kronecker products, but

the mathematics can be explained with a small example. Suppose

we want to compute the Kronecker product of these two matrices:




















⊗

2221

1211

333231

232221

131211

bb

bb

aaa

aaa

aaa

Start by writing a copy of the left-hand matrix with a big dot after

each entry:















•••

•••

•••

333231

232221

131211

aaa

aaa

aaa

Next, replace each dot with a copy of the right-hand matrix:













































































2221

1211
33

2221

1211
32

2221

1211
31

2221

1211
23

2221

1211
22

2221

1211
21

2221

1211
13

2221

1211
12

2221

1211
11

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

Do the multiplications that you have set up and get rid of all those

inner brackets, giving one big matrix as your answer:

























223321332232123222311231

123311331232113212311131

222321232222212222212121

122311231222112212211121

221321132212211222112111

121311131212111212111111

babababababa

babababababa

babababababa

babababababa

babababababa

babababababa

Some questions you can ask the students: If A is an n × m matrix

and B is a q × p matrix, then how big is A ⊗ B? What’s the

formula for the entry in row i and column j? (As a hint for the

second question, remind them of modular arithmetic.) Is the

operation commutative? (No. In general A⊗B ≠ B⊗A.) But it is
associative. What algorithm would you use to compute the

Kronecker product from two input matrices?

Our students designed two different algorithms, one of which

used two nested loops to iterate through the rows and columns of

the answer matrix. The other algorithm had four nested loops that

iterated over the rows and columns of the two input matrices.

Aferward, we asked the students to compare the time complexities

of the two algorithms and to discuss which algorithm is easier to

understand.

Once the students know how to form a Kronecker product, you

can explain exactly how the astronauts 8 × 8 matrices are formed.

Each astronaut chooses one of these 2 × 2 matrices to run on his

or her qubit according to the color of their stone:

BLUE = 



−

11
11

2

1
 RED = 



−

1

1

2

1

i

i

Notice that the red matrix has two imaginary entries.

The combined effect of the three astronauts running their

individual programs is the Kronecker products of their three

matrices. For example, if all three are given blue stones, then the

combined matrix is:

BLUE ⊗ BLUE ⊗ BLUE =



























−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1

This is the matrix we have seen before for the all-blue case. Each

of the 1-2 cases results in a different 8 × 8 matrix. For example, if

Alice gets a blue stone and the other two get red stones, then the

matrix is:

BLUE ⊗ RED ⊗ RED =



























−−

−−

−−

−−−−−−

−−−−

−−−−

−−−−

−−−−

1111

1111

1111

1111

1111

1111

1111

1111

8

1

iiii

iiii

iiii

iiii

iiii

iiii

iiii

iiii

7. A CS2 PROGRAMMI'G ASSIG'ME'T
With this background in place, we give a two-part assignment to

our CS2 students :

1. Write a class for square matrices where the individual

entries are complex numbers. The class must include

operations for retrieving the size, setting and retrieving

individual elements, matrix addition, matrix multipli-

cation and the Kronecker product.

2. Use your matrix class in a program to verify that our

three astronauts’ quantum computer strategy will always

win the three-stone game.

Some students ask for more information. Mermin [5][6] does a

wonderful job of explaining these kinds of games (now called

Mermin-GHZ games). With the background that we’ve provided,

many students can also understand the paper by Brassard, et. al.,

[2]. For amore general coverage of quantum computing, we point

them to Aaronson’s recent Scientific American article [1].

8. ACK'OWLEDGME'TS
Our thanks to our students for allowing us to try out these ideas.

9. REFERE'CES
[1] Aaronson, S. “The limits of quantum computers”, Scientific

American (Mar. 2008), 62-69.

[2] Brassard, G., Broadbent, A. and Tapp, A. 2005. Quantum

pseudo-telepathy. Foundations of Physics 35, 11 (Nov.

2005), 1877-1907. http://arxiv.org/abs/quant-ph/0407221

[3] Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.

“Bell’s theorem without inequalities”, Amer. J. of Physics

58, 12 (Dec. 1990), 1131-1143.

[4] Jemderson, H.V., Pukelsheim, F., and Searle, S.R. “On the

history of the Kronecker product”, Linear and Multilinear

Algebra 14, 2 (Oct 1983), 113-120.

[5] Mermin, N.D. “Quantum mysteries revisited”, Amer. J. of

Physics 58, 8 (Aug. 1990), 731-734.

[6] Mermin, N.D. “What’s wrong with these elements of

reality?”, Physics Today 43 (1990), 9-11.

[7] Monroe, C.R. and Wineland, D.J. “Quantum computing with

ions”, Scientific American (Aug. 2008), 64-79.

[8] Shor, P. “Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer”, SIAM J.

Sci. Statist. Comput. 26 (1997), 1484.

