
What Did Qubits Ever Do for Me? 

An Answer for CS2 Students 

Robert Frohardt 
Department of Computer Science 
University of Colorado at Boulder 

UCB 430 
Boulder, CO 80309-0430 

303-547-8023 

frohardt@colorado.edu 

Yingdan Huang 
Department of Computer Science 
University of Colorado at Boulder 

UCB 430 
Boulder, CO 80309-0430 

303-489-8934 

Yingdan.Huang@colorado.edu 

Michael Main 
Department of Computer Science 
University of Colorado at Boulder 

UCB 430 
Boulder, CO 80309-0430 

303-723-9527 

main@colorado.edu 
 

 
 

ABSTRACT 

We show how to teach and motivate small quantum computer 

programs as a supplemental topic in a CS2 data structures class. A 

traditional example such as Shor’s factorization [8] could be used, 

but we focus instead on the area of quantum pseudo-telepathy 

games.  Examples in this area require less mathematics than 

factorization and are easy to motivate with short proofs that the 

problems solved have no solutions in a world of classical 

computing. A CS2 class is a good location to present this work 

because of the matrix storage and manipulation that’s required. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 

Science Education – curriculum. 

I.m [Computing Methodologies]: Miscellaneous. 

General Terms 
Algorithms. 

Keywords 
CS2, quantum computing, quantum pseudo-telepathy. 

1. I'TRODUCTIO' 
Undergraduate students are enticed by new developments in 

science and computing. For computer science students, one 

extraordinary area is quantum computing. The students’ interest 

comes directly from the remarkable counterintuitive results—but 

this counterintuitive nature and some advanced mathematics 

makes it seem unmanageable to introduce the ideas to beginning 

students.  

Nevertheless, there are aspects that are appropriate for a typical 

CS2 class. This paper describes the approach we took from the 

introduction of quantum computing to a comprehensive assign-

ment that involves implementing a matrix class for simulating 

quantum computations. We include specific techniques for 

explaining the necessary concepts of qubits, superposition, 

interference and quantum entanglement using a particular problem 

in the area of quantum pseudo-telepathy. The CS2 students can 

understand the proof that the problem is unsolvable using 

classical computing. Next, they quickly gain a qualitative 

understanding of the quantum computing solution—particularly 

the aspect that Einstein objected to as a “spooky action at a 

distance.” With an additional introduction of the matrix 

representation of quantum computer programs, the students can 

implement a simulation of the quantum computing solution using 

a Kronecker product. 

2. THE THREE-STO'ES PROBLEM 
One way to motivate any new technique is to present a problem 

that simply cannot be solved without the technique. Many such 

problems in quantum computing are characterized as pseudo-

telepathy games—a name that was chosen because it appears that 

the problems cannot be solved without instantaneous telepathy. 

(See, for example, the survey by Brassard, et. al. [2].) In our CS2 

class, we begin by presenting one such game derived from an 

example of Greenberger, et. al. [3]. 

The game involves three astronauts and three aliens, so we pick 

three students from our class—Alice, Bob and Charlie—for the 

astronauts and three conveniently available teaching assistants for 

the aliens. The entire class is told the rules ahead of time: 

1. Prior to the start of the game, the astronauts may meet to 

devise strategies and exchange whatever objects they 

may need. 

2. The three aliens will then take the three astronauts to 

planet around different far-flung stars.  

3. Once at the stars, the aliens will give one colored stone 

to each astronaut. There is also a guarantee: Either the 

stones are all blue stones (the all-blue case), or there is 

one blue stone and two red stones (the 1-2 case).  

4. At this point, each astronaut must decide whether to 

keep his or her stone or to give it back—and they must 

do so quickly (without enough time to communicate at 

the speed of light). 

5. In the all-blue case, the game is won if the astronauts 

keep an odd number of stones; in the 1-2 case, the game 

is won if the astronauts keep an even number of stones. 
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At this point, we have our students play the game a few times 

(although, because of time constraints, the students are taken to 

the far-flung corners of the classroom instead of to stars). Perhaps 

the students win sometimes, perhaps they lose—it doesn’t matter 

because we’re just trying to understand the rules. Then we pose a 

task to Alice, Bob and Charlie: Come up with a strategy that will 

always win, regardless of whether you’re given all blue stones or 

one of the 1-2 cases. This challenge is presented at the end of a 

lecture, and the class is sent away to think. 

At the start of the next lecture, we let them try a few ideas, but the 

classroom easily shoots them down. 

“Let’s always give back blue stones and keep red ones,” the 

students might propose—but that won’t work in the all blue case. 

A more complicated strategy might have Alice, Bob and Charlie 

each do something different with their stones, but each suggested 

strategy has at least one situation where it fails. This kind of 

strategy—where Alice, Bob and Charlie each decide ahead of time 

what to do with each kind of stone—is called a deterministic 

strategy. We ask the students to figure out the number of different 

deterministic strategies, and to justify their number. Some 

students might come up with a table like this, where a 0 means 

that an astronaut gives back the stone and a 1 means it’s kept. 

Each row of the table represents a different possible deterministic 

strategy: 

What does Alice 

do with… 

What does Bob 

do with… 

What does Charlie 

do with… 

a blue 

stone 

a red 

stone 

a blue 

stone 

a red 

stone 

a blue 

stone 

a red 

stone 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 0 0 0 1 1 

0 0 0 1 0 0 

…and so on down to… 

1 1 1 1 1 1 

We could go through the table row-by-row and find a situation 

where each strategy fails. For example, the first row (where every 

stone is always given back) fails if the aliens give the astronauts 

three blue stones. The row-by-row approach will successfully 

shoot down all 64 strategies, but it is time-consuming and there’s 

a better, generalized proof that shoots down all strategies at once.  

For the proof, we give a name to each of the six bits of any given 

row from the table of possible strategies. The bit in the first 

column is ABLUE; the second column is ARED; the third column is 

BBLUE;and so on. For the given strategy to work in the all blue 

case, we must have: 

ABLUE + BBLUE + CBLUE = some odd number 

And for the three different 1-2 cases to all work, we must have: 

ABLUE + BRED + CRED = some even number 

ARED + BBLUE + CRED = some even number 

ARED + BRED + CBLUE = some even number 

This gives us four equations. If one of the equations fails, then the 

strategy fails for the corresponding case. So, an always-successful 

strategy must have all four equations true. With this in mind, ask 

the students to add the left and right sides of all four equations 

and simplify things to come up with one total equation. They’ll 

get something like this: 

2ABLUE + 2ARED + 2BBLUE + 2BRED + 2CBLUE + 2CRED  

= some odd number 

This one equation must be valid if the given strategy is always 

successful. But the left side of the equation is even and the right 

side is odd—hence no deterministic strategy will always win the 

game. 

The purpose of this little proof is to convince the students that 

there’s no strategy that wins all the time. Some student may 

wonder about nondeterminism. “How about if we wait until we 

get the stones and then roll some dice to determine whether to 

give back the stones?” This is not a deterministic strategy, but it 

fares no better because the dice rolls just randomly select one of 

the flawed deterministic strategies. Sometimes the dice rolls might 

be lucky and win, but the dice don’t always win. 

Another possibility is for the astronauts to communicate with each 

other after they get their stones. “Hey, I’ve got a blue stone,” 

Alice can shout to Bob. “What should I do with it?” If this were 

allowed, then a winning strategy is not hard to device, but such 

communication is forbidden. In the real test, the astronauts are at 

far-flung stars, and they will have to make their decisions 

quickly—much more quickly than speed-of-light messages could 

be sent and received. 

And now the amazing part: It is possible to create some quantum 

computer programs that the astronauts can run after they get to 

their stars. The programs that they run depend on the colors of 

their stones, and the outputs of the programs direct their actions in 

a way that guarantees a win. 

3. QUBITS 
It’s time to introduce quantum computing, starting with the basic 

data in a quantum program. Our students already know about 

ordinary bits. “A qubit is similar,” we say. “It’s a memory value, 

and when we examine it, it’s value is either 0 or 1. But in the time 

before we examine a collection of qubits, they may be in a 

remarkable state called a superposition of observable states.” 

For example, suppose we have three qubits. The physicists 

represent one possible superposition this way: 

0.7|111〉  +  0.5|100〉  −  0.5|011〉  +  0.1|010〉 
Each term in the expression has an amplitude (such as 0.7) and a 

triplet of bit values (such as |111〉). The square of the amplitude 

tells the probability of finding the triplet when the bits are 

examined. In this case, we have: 

• 0.72 = 49% chance of finding three 1’s (|111〉 ) 
• 0.52 = 25% chance of finding |100〉 
• (−0.5)2 = 25% chance of finding |011〉 
• 0.12 = 1% chance of finding |010〉       

Physicists have proposed and built a number of different ways to 

implement small collections of qubits. The important point is that 

when a quantum computer program runs, the amplitudes attached 

to various triplets change. At the end of the program, we examine 

the qubits. The probability of finding any particular triplet of 

qubits depends on the amplitude attached to the triplet at that 

time.  



How can this help with the three-stone problem? Before the 

astronauts leave the Earth, they’ll set up a three-qubit quantum 

computer. Each astronaut takes one of the three qubits with him to 

the stars—perhaps carrying it in a contraption called an ion trap, 

which is one way to implement qubits. When each astronaut is 

shown the color of his stone, he uses that color to select one of 

two programs—the blue program or the red program—and he 

runs that program on his qubit. For example, if Alice is given a 

red stone, she runs the red program on her qubit and then looks at 

the qubit. A zero qubit tells her to give the stone back; a one 

means to keep her stone. The other two astronauts do the same. 

Because of a property called quantum entanglement, when each 

astronaut runs a program it changes the amplitudes on all eight of 

the triplets in a mathematical way that we’ll see in a moment. This 

is part of quantum mechanics that Einstein never fully accepted. 

He called it a “spooky action at a distance”1 and spent much effort 

devising thought experiments to illustrate its fallacy—but 

experiments in the 1980s showed that entanglement occurs 

exactly as predicted by quantum mechanics.  

We’ll see our astronauts’ blue and red programs in a moment, but 

for now, you should know this:  

When the astronauts run their programs, the amplitude on any 

incorrect triplet becomes zero. 

For example, if they were given all blue stones and they each run 

their blue program, then the amplitudes on |000〉, |011〉, |101〉 and 
|110〉 all become zero. (Those are the four combinations that lose 

in the all-blue case.) Hence, when they go to look at their three 

qubits, they always find a winning combination.  

4. QUA'TUM COMPUTER PROGRAMS 
The presentation could be stopped here. But if you’ve used some 

previous programming examples involving complex numbers and 

matrices, you can continue to show exactly what the quantum 

computer programs look like.  

The complex numbers and matrices are needed because the 

amplitudes that we’ve already seen may be any complex number, 

and these amplitudes are usually arranged into a single vector.  

We draw the vector as a column vector in which the columns’ 

labels are the triplets, like this: 

111

110

101

100

011

010

001

000

0

5.0

0

0

5.01.0

0

0

7.0

























−

+ i

In this example, the triplet |000〉  has an 
amplitude of 0.7, meaning that the 

probability of finding that triplet is 0.72 = 

49%. Notice that the triplet |011〉 has a 
complex number, 0.1 + 0.5i, for its 

amplitude. For a complex amplitude, the 

Nobel laureate Max Born proposed the rule 

that the probability is the sum of the squares 

of the coefficients for the real and imaginary 

parts (0.12 + 0.52 = 26% for our example). 

The advantage of arranging the amplitudes in a vector is that 

quantum computer programs can then be mathematically 

expressed as a certain kind of matrix.  

                                                                 

1 “spukhafte Fernwirkung”—from a letter that Einstein wrote to 

Max Born on March 3, 1947. 

A superposition of n qubits is represented as a column vector of 

height 2n. And a quantum computer program to manipulate n 

qubits is always a unitary matrix of size 2n × 2
n. 

Our students haven’t seen unitary matrices at this point, so we 

start by explaining the conjugate transpose of a matrix (obtained 

by transposing the matrix and then replacing each entry a+bi with 

its complex conjugate a−bi). For any matrix U, this gives a new 

matrix U
†
—and the definition of a unitary matrix requires that U

†
 

is the matrix inverse of U. We give a small example that will also 

arise later in the presentation: 

U = 





− 221
221

//
//
i

i
  U

† = 




−

22

2121

//
//
ii

 

UU
† = U†

U = 





10

01
 

As a larger, but still simple, example, we ask our students to 

compute how the 3-qubit quantum system given above changes 

when we run this particular program (an 8 × 8 unitary matrix): 























00001000

00000100

00000010

00000001

10000000

01000000

00100000

00010000

 

The answer is obtained by a matrix multiplication: 























00001000

00000100

00000010

00000001

10000000

01000000

0000000

00010000

1

























−

+

0

5.0

0

0

5.01.0

0

0

7.0

i
= 

























+

−

i5.01.0

0

0

7.0

0

5.0

0

0

 

After running the program, the probabilities of finding various 

triplets have changed according to the rules of matrix 

multiplication. 

The students inevitably want to know why quantum computer 

programs are unitary matrices. One honest answer is that 

physicists such as Born simply found that this mathematics 

provides the correct results for experiments with quantum 

systems. Moreover, modern-day physicists and computer 

scientists are now able to build small collections of qubits and the 

hardware that enacts any possible unitary matrix to manipulate the 

system. A variety of different physical mechanisms are used, such 

as the ion trap in 2008 that achieved eight qubits via calcium ions 

confined in electromagnetic fields. We provide some reading on 

this implementation [7], but the main emphasis now becomes a 

data structures assignment to simulate the action of the particular 



quantum computer programs that the astronauts can use to solve 

the three-stone problem. 

5. THE ASTRO'AUTS’ PROGRAMS 
For the three-stone problem, the starfaring astronauts begin 

(before leaving Earth) by creating a system of three qubits that is 

initially in this state: 

111

110

101

100

011

010

001

000

2
1

21

/

/

0

0

0

0

0

0

























 

If the astronauts were to measure the qubits 

right away, there would be a 50% 

probability of finding |000〉 and 50% 

probability of finding |111〉. But, of course, 
they don’t measure the qubits right away. 

Instead, each astronaut takes one qubit to a 

far-off star. When each astronaut is given a 

stone, he or she chooses a program to run 

based on the color of the stone. There will 

be three programs in all (one run by each 

astronaut on his or her qubit).  

The combined effect of the three astronauts running their three 

programs will change the amplitudes on the triplets according to 

some 8 × 8 matrix. For example, let’s look at the case where they 

are all given blue stones. The effect of all astronauts running their 

blue programs is given by this quantum computer program: 



























−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1
 

The scalar, 8
1 , simply means that each of the matrix entries is 

multiplied by this amount. When this program is applied to the 

starting state, the result is: 

























=



















































−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

2/1

0

0

2/1

0

2/1
2/1

0

0

0

0

0

0

0

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1

2
1

21

/

/

 

As promised for this situation of all blue stones, the final state has 

zero values for the triplets |000〉, |011〉, |101〉 and |110〉. Hence, the 
only triplets that the astronauts will ever see are ones where they 

keep an odd number of stones, and they are guaranteed to win the 

game! 

The students will have questions now. 

Why did the astronauts create that particular starting state? To 

some extent, the answer to this questions is contrived. The 

designers of this game explicitly created it so that it would have 

no solution in the world of classical physics, but that it would 

have a quantum computing solution that started from that one 

particular starting state. 

Just how did you figure out that the combined effect of running 

three blue programs would be that matrix? For this question , we 

need to know about Kronecker products—a mathematical 

construct named after the 19th century German mathematician 

Leopold Kronecker, though he was not the first to use it [4]. 

6. THE SPOOKY MATHEMATICS OF 

KRO'ECKER PRODUCTS 
To finish the presentation, we need to show how the 8 × 8 matrix 

is constructed from three separate programs that the astronauts run 

on their three separate qubits.  

The three astronauts and their qubits are widely separated, which 

has a consequence: it is no longer possible to manipulate the 

qubits with an arbitrary unitary matrix. Instead, each astronaut 

must run a program for one qubit on his or her qubit. These 

matrices for manipulating a single qubit are 2 × 2 unitary matrix. 

Now, here’s the entanglement part that Einstein found spooky: 

When the three astronauts run their separate 2 × 2 matrices on 
their individual qubits, the result on the entire triplet is computed 

by an 8 × 8 matrix that is formed from the smaller matrices using 
the mathematical operation of Kronecker product. 

Our students have not previously seen Kronecker products, but 

the mathematics can be explained with a small example. Suppose 

we want to compute the Kronecker product of these two matrices: 




















⊗

2221

1211

333231

232221

131211

bb

bb

aaa

aaa

aaa

 

Start by writing a copy of the left-hand matrix with a big dot after 

each entry: 















•••

•••

•••

333231

232221

131211

aaa

aaa

aaa

 

Next, replace each dot with a copy of the right-hand matrix: 













































































2221

1211
33

2221

1211
32

2221

1211
31

2221

1211
23

2221

1211
22

2221

1211
21

2221

1211
13

2221

1211
12

2221

1211
11

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

bb

bb
a

 

Do the multiplications that you have set up and get rid of all those 

inner brackets, giving one big matrix as your answer: 



























223321332232123222311231

123311331232113212311131

222321232222212222212121

122311231222112212211121

221321132212211222112111

121311131212111212111111

babababababa

babababababa

babababababa

babababababa

babababababa

babababababa

 

Some questions you can ask the students: If A is an n × m matrix 

and B is a q × p matrix, then how big is A ⊗ B? What’s the 

formula for the entry in row i and column j? (As a hint for the 

second question, remind them of modular arithmetic.) Is the 

operation commutative? (No. In general A⊗B ≠ B⊗A.) But it is 
associative. What algorithm would you use to compute the 

Kronecker product from two input matrices?  

Our students designed two different algorithms, one of which 

used two nested loops to iterate through the rows and columns of 

the answer matrix. The other algorithm had four nested loops that 

iterated over the rows and columns of the two input matrices. 

Aferward, we asked the students to compare the time complexities 

of the two algorithms and to discuss which algorithm is easier to 

understand. 

Once the students know how to form a Kronecker product, you 

can explain exactly how the astronauts 8 × 8 matrices are formed. 

Each astronaut chooses one of these 2 × 2 matrices to run on his 

or her qubit according to the color of their stone: 

BLUE = 



−

11
11

2

1
         RED = 



−

1

1

2

1

i

i
 

Notice that the red matrix has two imaginary entries. 

The combined effect of the three astronauts running their 

individual programs is the Kronecker products of their three 

matrices. For example, if all three are given blue stones, then the 

combined matrix is: 

BLUE ⊗ BLUE ⊗ BLUE = 



























−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1
 

This is the matrix we have seen before for the all-blue case. Each 

of the 1-2 cases results in a different 8 × 8 matrix. For example, if 

Alice gets a blue stone and the other two get red stones, then the 

matrix is: 

BLUE ⊗ RED ⊗ RED = 



























−−

−−

−−

−−−−−−

−−−−

−−−−

−−−−

−−−−

1111

1111

1111

1111

1111

1111

1111

1111

8

1

iiii

iiii

iiii

iiii

iiii

iiii

iiii

iiii

 

7. A CS2 PROGRAMMI'G ASSIG'ME'T 
With this background in place, we give a two-part assignment to 

our CS2 students : 

1. Write a class for square matrices where the individual 

entries are complex numbers. The class must include 

operations for retrieving the size, setting and retrieving 

individual elements, matrix addition, matrix multipli-

cation and the Kronecker product. 

2. Use your matrix class in a program to verify that our 

three astronauts’ quantum computer strategy will always 

win the three-stone game. 

Some students ask for more information. Mermin [5][6] does a 

wonderful job of explaining these kinds of games (now called 

Mermin-GHZ games). With the background that we’ve provided, 

many students can also understand the paper by Brassard, et. al., 

[2]. For amore general coverage of quantum computing, we point 

them to Aaronson’s recent Scientific American article [1].  
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