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ABSTRACT

We describe a framework for implementing computational
thinking in a broad variety of general education courses. The
framework is designed to be used by faculty without formal
training in information technology in order to understand
and integrate computational thinking into their own gen-
eral education courses. The framework includes examples
of computational thinking in a variety of general education
courses, as well as sample in-class activities, assignments,
and other assessments for the courses. The examples in the
different courses are related and differentiated using cate-
gories taken from Denning Great Principles of Computing,
so that similar types of computational thinking appearing
in different contexts are brought together. This aids under-
standing of the computational thinking found in the courses
and provides a template for future work on new course ma-
terials. Specific examples of computational thinking in the
design category are provided in the context of three distinct
courses.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Informa-
tion Science Education

Keywords

Computational thinking, Great Principles of Computing,
General education

1. INTRODUCTION

The development of computer technologies and computer
science has been largely motivated by a desire to support,
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extend and amplify the human intellect. In order to make
an effective use of computer applications and techniques in
his/her field, a person needs to have certain skills. One
skill is the ability to use basic computer applications such
as an editor and a web or file-system browser; this skill is
often described as computer literacy. Another skill is a high
level understanding of the workings of a computer system,
often defined as computer fluency. While computer liter-
acy and fluency are certainly necessary, neither is sufficient
for fully realizing the potential that computing can have in
augmenting a person’s productivity in their field. The third,
critical, skill set is the intellectual and reasoning skills that
a professional needs to master in order to apply computa-
tional techniques or computer applications to the problems
and projects in their field, whether the field is in the arts,
sciences, humanities, or social sciences.

This third skill was given the name computational think-
ing in a 2006 CACM article by Jeannette Wing [8]. Com-
putational thinking is not new, however. Many of its ele-
ments are as old as mathematics itself such as Euclid’s 500
B.C Greatest Common Divisor algorithm. What is different
about the recent attention on computational thinking is the
emphasis on explicitly defining what it is and explicitly us-
ing it to gain new insights into problems in fields outside of
computer science. Wing argues in her seminal article that
computational thinking is an emerging basic skill and should
become an integral part of education.

Although computational thinking has been defined only
recently, there are a number of projects with a focus on re-
fining and understanding computational thinking. Here we
describe a project in which we developed a framework for
implementing Wing’s vision in the context of undergradu-
ate education. Our project focuses on using liberal stud-
ies courses — part of the education of the vast majority of
undergraduates — as a vehicle for the teaching of compu-
tational thinking. In conjunction with a diverse group of
faculty we have developed a framework that faculty with-
out formal training in information technology can use to
understand and integrate computational thinking into their
liberal studies courses. The framework includes examples
of computational thinking in a variety of general education
courses, as well as sample in-class activities, assignments,
and other assessments for the courses. To aid understand-



ing the framework uses a uniform set of keywords to describe
the various instances of computational thinking.

There are other NSF-funded projects with a similar fo-
cus on integrating computational thinking into the under-
graduate curriculum including “Piloting Pathways for Com-
putational Thinking in a General Education Curriculum”
[4], “Computational Thinking Showcase: Computing Con-
cepts Across the Curriculum” [2], “Computing Education
in Science Context” [6], “Living In the KnowlEdge Society
(LIKES)” [5], and “Renaissance Computing” [7]. Our project
is unusual in that it involves a broad group of 18 faculty
across diverse disciplines including areas outside of comput-
ing and the hard sciences and that it focuses on integrat-
ing computational thinking into existing, discipline-specific
courses.

2. THE FRAMEWORK

In this section we introduce the keywords used in the com-
putational thinking framework, introduce the Liberal Stud-
ies Program at DePaul University in which all the courses
in the framework are taught, and provide an overview of the
computational thinking instances found in the 19 courses
that form the backbone of the framework.

2.1 Principles of Computing

Computation is a broad term that encompasses different
tasks, concepts, and techniques. Similarly, computational
thinking involves a broad set of approaches and skills. For
this project we found it useful to consider different cate-
gories of computational thinking and use these categories to
understand computational thinking by distinguishing differ-
ences and finding similarities between specific examples in
different fields.

The categories we started with in this project are those
defined by Denning in his “Great Principles of Computing”
project [3]. The goal of Denning’s project is to articulate
the fundamental principles of computing. Of particular in-
terest to us is one of Denning’s motivations: “To establish
a new relationship with people from other fields by offering
computing principles in a language that shows them how to
map the principles into their own fields.” He claims that the
“principles of computing can be organized into seven cat-
egories, each emphasizing a unique perspective on compu-
tation.” The Great Principles of Computing, according to
Denning, are: computation, communication, coordination,
recollection, automation, evaluation, and design. Below is
our definition of each principle. Note that the definitions are
somewhat different from Denning’s because we are defining
them in a context larger than computer science.

Computation is the execution of an algorithm, a process
that starts from an initial state containing the algorithm
and input data, and goes through a sequence of intermediate
states until a final, goal state is reached. Communication is
the transmission of information from one process or object to
another. Coordination is control (through communication,
for example) of the timing of computation at participating
processes in order to achieve a certain goal. Recollection is
the encoding and organization of data in ways to make it
efficient to search and perform other operations. Automa-
tion is the mapping of computation to physical systems that
perform them. Evaluation is the statistical, numerical, or
experimental analysis, and visualization, of data. Design is
the organization (using abstraction, modularization, aggre-

gation, decomposition) of a system, process, object, etc.

2.2 The Framework Overview

We briefly outline the current Liberal Studies program
at DePaul University. The program consists of two parts.
The first part is a Common Core which includes, among
others, a first-year, two-course sequence in Mathematical
and Technology Literacy, designed to teach “how to apply
quantitative reasoning and quantitative information, and to
critically evaluate real-world issues and problems using mod-
ern information technologies (e.g., spreadsheets, databases,
statistical analysis software, search engines, programming
algorithms).” [1] This sequence is the basis upon which we
think the teaching of computational thinking in context can
occur in other courses of the Liberal Studies Program.

The second component of the Liberal Studies Program is
made up of courses in six distinct learning domains: Arts
and Literature, Philosophical Inquiry, Religious Dimensions,
Scientific Inquiry, Self, Society, and the Modern World, and
Understanding the Past. Students are required to take 2-3
courses in each domain, but have a choice of at least several
dozen courses for each domain.

There are some courses in many of the domains in which
we think computational thinking can and should be explic-
itly taught. In Table 1 we list the 19 courses that were
reworked in order to form the backbone of the project. The
Liberal Studies Domain in which the course is located is also
listed in the table.

Course Title

Scientific Inquiry

CSC 233 Codes and Ciphers

CSC 235 Problem Solving

CSC 239 Personal Computing

ECT 250 Internet, Commerce, and Society
ENV 216 Earth System Science

ENV 230 Global Climate Change

ENV 340 Urban Ecology

GEO 241 Geographic Information Systems I
HCI 201 Multimedia and the WWW

IT 130 The Internet and the Web

Arts and Literature

ANT 201 Animation I

ANT 230 3D Modeling

DC 201 Introduction to Screenwriting

GAM 224 Introduction to Game Design
HAA 130  Principles of European Art
Understanding the Past

HST 221 Early Russia

HST 250 Origins of the Second World War
First Year Program

LSP 112 Focal Point Seminar (The Moon)
Honors Program

HON 207 Introduction to Cognitive Science

Table 1: The project courses

As mentioned previously, each of these courses were re-
vised in order to make the computational thinking more
explicit. Course materials highlighting one or more topics
incorporating computational thinking concepts were devel-
oped, learning goals for the computational thinking concepts
were formulated, and assessments were written for the learn-
ing goals. In Tables 2 and 3 we categorize the examples of
computational thinking made explicit in the 19 classes by
computing principle.

3. COMPUTATIONAL THINKING EXAM-
PLES



Course Auto. Comm. Comp.
Scientific Inquiry

CSC 233 XX
CSC 235 XX
ECT 250 XX

IT 130 XX

Arts and Literature

ANT 201 XX

ANT 230 XX XX
First Year Program

LSP 112 XX
Honors Program

HON 207 XX

Table 2: Examples of automation, communication, and com-

putation in the chosen courses
Course Coor. Desi. Eval. Reco.
Scientific Inquiry
CSC 233 XX
CSC 235 XX
CSC 239 XX
ENV 216 XX
ENV 230 XX
ENV 340 XX XX
GEO 241 XX
HCI 201 XX XX
IT 130 XX XX
Arts and Literature
ANT 230 XX XX
DC 201 XX
GAM 224 XX XX
HAA 130 XX XX
Understanding the Past
HST 221 XX
HST 250 XX
First Year Program
LSP 112 XX
Honors Program
HON 207 XX

Table 3: Examples of coordination, design, evaluation and
recollection in the chosen courses

In this section we provide three detailed examples from
our framework. Each example covers an example of compu-
tational thinking in a given course and includes: (A) the cat-
alog course description, (B) a high-level description of the
course and computational thinking concepts covered, (C)
the computational thinking learning goal, (D) a case discus-
sion and several guiding questions, and (E) an assessment for
the specified learning goal. The examples have been chosen
from the same computational thinking category; however,
for contrast very different types of courses have been cho-
sen. The first is a course in the Scientific Inquiry Domain
that introduces geospatial information processing; the sec-
ond is an Arts and Literature course about game design; and
the third is an animation course that focuses on 3-D model-
ing for gaming. Viewing three different examples of design
in widely disparate contexts provides good insight into the
breadth of examples found in our project framework.

3.1 Scientific Inquiry: Geographic Informa-
tion Systems I

(A) Catalogue description: An introduction to the funda-
mentals of geospatial information processing. Special top-
ics include spatial data types, map design, and animation.
Instruction is accomplished through lectures and hands-on
computer lab exercises.
(B) Representing land, water and other geographic features
GEO 241 introduces basic concepts and methods that un-
derlie information systems designed to deal with geographi-

cally referenced data. Students will get to understand char-
acteristics of geographic data, and learn to apply GIS meth-
ods and tools to display and analyze geographic data. Two
types of data models are used to represent spatial entities
in GIS: vector and raster. A vector model represents spatial
entities based on a set of points (or vertices). A raster model
represent spatial entities based on a set of regular grid cells.
(C) CT Learning Goals: Students will be able to under-
stand different ways in which spatial entities are abstracted
into data (that is spatial data modeling) and comprehend
the advantages and disadvantages of each. (CT category:
Design)

(D) Geographic features representations, case discussion:
Imagine you’re flying over the State of New York. Let’s
focus on two natural landmarks: the Adirondack Mountains
and Lake Ontario. Given your understanding of GIS data
models reviewed earlier, consider what data model would be
suited to representing spatial properties of the Adirondack
Mountains, and Lake Ontario. Spatial properties can be
generalized into characteristics specific to point, line, area,
and volume in terms of geometry type: location, length,
direction, area, shape, and concentration. Now sketch the
vector and raster view that represents the boundary of Lake
Ontario.

[Q1.] Take a close look at your sketch of the vector view.
In what way would a vector model be limited in represent-
ing the boundary of Lake Ontario? Is there any merit that
a vector model offers in representing the boundary of Lake
Ontario? Repeat all this with the raster view of the bound-
ary of Lake Ontario. Then sketch the vector and raster view
that represents the elevation of the Adirondack Mountains.
[Q2.] Take a close look at your sketch of vector view. In
what way would a vector model be limited in representing
the elevation of the Adirondack Mountains? Is there any
merit that a vector model offers in representing the elevation
of the Adirondack Mountains? Repeat thus with the raster
view.

(E) Assessment: The students’ job is to estimate the fraction
taken by green spaces in Chicago using two sets of data—
DLG (Digital Line Graphs) and DOQ (Digital Orthophoto
Quadrangles)—that cover the City of Chicago. DLG is vec-
tor data and DOQ is raster data. The fraction of green
spaces from DLG will be calculated as the sum of vector
areas that constitute green spaces divided by the total land
area of Chicago. The fraction of green spaces from DOQ
will be calculated as the sum of raster areas that constitute
green spaces divided by the total land area of Chicago. Vec-
tor areas are the sum of trapezia marked as green spaces.
Raster areas are the sum of pixels marked as green spaces.
The students will answer the following questions:

e Suppose that it turns out that results (that is the frac-
tion of green spaces from DLG and the fraction of
green spaces from DOQ) are quite different. What
would explain the difference?

e What data model do you think yields better estimation
results? Why do you think so? Be sure to link the
respective data model to characteristics of geographic
phenomena measured.

e Do you think that getting the estimate of the fraction
of green spaces from digital data is any better than
alternative methods like a field survey? If so, in what



way? If not, in what way? You should answer both
questions (that is, why better and worse).

3.2 Arts and Literature: Introduction to Game
Design
(A) Catalog Description: This course approaches the study
of computer games from three directions angles: first, as
examples of media that can be analyzed and critiqued for
their thematic elements, formal structure, plot and interac-
tive appreciation; second, as complex software artifacts sub-
ject to technological constraints and the product of a labor-
intensive design and implementation process; and three as a
cultural artifact with behaviors and associations compara-
ble in import to other popular art forms. Student will study
the principles of game design and use them both to ana-
lyze existing games and to develop their own original game
ideas. Students will also learn about the process of game de-
velopment, starting from the game’s narrative concept and
moving to consideration of a game’s components: the rep-
resentation of the player, of artifacts, the virtual world that
contains them and the interaction between them and the
player.
(B) Representation of Game Rules Game rules can be cat-
egorized into three types: constituative, operational, and
implicit. Operational rules are the guidelines players re-
quire in order to play, such as the rules printed on the box
of a board game. Constituative rules are the underlying
logical and mathematical structures in the game. Implicit
rules are the "unwritten” rules of the game, such as rules
about decorum. Important here are the first two types of
rules: constituative and operational. Two games are con-
sidered to be the same if there is a 1-1 relationship between
the constituative rules of the two games, so that if you can
find a winning strategy in one game you can use the map-
ping to find a winning strategy in the other game. At the
same time, the operational rules for two structurally identi-
cal games can vary significantly. While the operational rules
are what make a game enjoyable to play, the constituative
rules are the ones that more experienced players are using
when they find winning strategies.

Abstracting game rules in different ways is an example
of computational thinking; it allows students to see the re-
lationship between different abstractions of rules, the mod-
eling of game behavior, and the underlying structure of a
game.

(C) CT Learning Goals: Students will be able to abstract
the operational rules of a simple board game to find the
underlying constituative rules for the game and use the con-
stituative rules to comment on strategies that may exist for
the game. (CT category: Design)

(D) Tic-Tac-Toe and 3-to-15, case discussion: Students will
consider the well-known rules of Tic-Tac-Toe as well as the
rules of 3-to-15 described as follows:

1. Two players alternate turns

2. On your turn, pick a number from 1 to 9. You may not
pick a number that has already been picked by either player.
3. The first person to obtain a set of exactly 3 numbers that
sum to 15 wins the game

4. If all numbers between 1 and 9 have been chosen and
no player has a subset that sums to 15, the game ends in a
draw

Q1. What strategies exist for Tic-Tac-Toe? Include both
strategies for winning and for preventing the other

player from winning.

Q2. What strategies exist for 3-to-157 Include both strate-
gies for winning and for preventing the other player
from winning.

Q3. Are the two games the same? Why?

Q5. Translate a strategy for Tic-Tac-Toe into a strategy for
3-to-15. For example, describe a blocking strategy for
3-to-15 derived from a blocking strategy for Tic-Tac-
Toe.

Q6. Which game is easier to play using its operational rules?
Why?

(D) Chutes and Ladders, case discussion: The Chutes and
Ladders children’s board game will be considered. The goal

of this activity is to find the set of constituative rules of
Chutes and Ladders.

Q1. How can you represent the spinner? How can you rep-
resent the player’s movement on the board without
using a board? How will the “chutes” be represented?
Explicitly list all of the constituative rules that must
be included for the “chutes” in the game. How will
the "ladders” be represented? Explicitly list all of the
constitutative rules that must be included for the "lad-
ders” in the game.

Q2. How do you handle the winning condition using this
model?

Q3. Does the purely constituative version of Chutes and
Ladders have the same feel as the original game?

Q4. Are there any strategies that the constituative rules
make clear to you?

(E) Assessment: Develop a set of constituative rules for the
board game Candyland by:

1. Constructing a table that represents the positions on the
board for each of the color blocks and picture cards. The
table should include a representation for the two shortcuts
(gumdrop pass and rainbow trail).

2. Describing a way to randomly produce each of the card
combinations from the deck.

3. Describing how each of the 3 penalty spaces (gooey gum-
drops, lost in the lollypop woods, and stuck in the molasses
swamp) will be handled in your rules.

4. Describing the winning condition for the game.

After you have constructed the constituative rules, de-
scribe any strategies that the rules make clear. If there are
no strategies that your constituative rules illuminate, ex-
plain why that is. Is it a property of your representation?
Or is it a property of the game?

3.3 Arts and Literature: 3-D Modeling

(A) Catalog description: This course covers introductory
modeling and texturing techniques required to construct 3D
objects and scenes to be used for animation and gaming.
Topics to be covered include: scene composition, modeling
3D objects with polygons and smooth surfaces, surface ma-
terials and texturing, cameras, lighting and rendering.

(B) Modularization in complex 3D modeling: Because most
3D models are inspired by or have a foundation in the world



we are familiar with, there is an inherent complexity in what
a 3D modeler is expected to achieve in order to give their
models an accepted level of believability. On the other hand,
the production time and the computer processing of 3D
models require them to be simple, not complex. Techniques
such as abstraction, modularization, automation, and ran-
domization are necessary to create realistic models that can
be efficiently designed and processed.

(C) CT Learning Goals: Students are able to identify vi-
sual patterns in a complex environment or object in order
to break it into groups of repetitive modular components.
They are then able to use automation and randomization
to efficiently design a realistic reconstruction of the envi-
ronment or model in 3D space. (CT categories: Design —
abstraction, Automation, Computation — randomization)
(D) Environment Modeling, case discussion: =~ When one
considers the problem a modeler faces when she is required
to create a field of grass, it quickly becomes apparent that
modeling each individual blade, texturing it, and placing
each in a scene would be a completely inefficient use of time
and even then may not result in a usable finished model.
Using modularization and automation, a 3D modeler would
instead create a single blade of grass which would then be
duplicated to fill the required area. The “organic” seeming
placement, rotation, scale, and relative color of individual
blades can then be achieved either by a simple randomiza-
tion script or (more often than not) some random clicks of
the mouse.

Students are required to model an interior warehouse en-
vironment out of simple polygon primitives. Along with
modeling a simple I-beam skeleton, they must create a be-
lievable space by modeling three different kinds of inventory
and then by arranging them appropriately within the ware-
house.

Q1. What challenges are presented when trying to fill the
warehouse space with inventory?

Q2. Describe some ways in which those challenges can be
met? What are the advantages and disadvantages to
each solution?

Q3. Do the solutions change depending on whether the ware-
house is modeled for a film as opposed to a video game?

Q4. What issues arise from duplicating model groups? How
can these issues be addressed?

Q5. What types of model attributes can randomness be ap-
plied to? Which ones give desirable results?

Q6. Does using an automated script for randomness offer
any benefits over creating it by hand? Are there ben-
efits to doing it by hand?

(E) Assessment: Students will be required to turn in a 3D
models and a rendered image of a finished warehouse space.
The image and the model will be evaluated for the student’s
ability to:

e Assemble efficient groups of modular components.

e Create the illusion of a complex space through the du-
plication of modular components.

e Break the patterns of repetition of warehouse inven-
tory with randomization.

4. FUTURE WORK

Assessment of a selection of the materials produced for
the 19 courses that form the backbone of this framework
is on-going. We wish to evaluate how well the materials
are conveying the computational thinking concepts so that
the examples and assessments can be further refined. Initial
results from the assessment have produced revised materi-
als, but this process will continue until at least June 2010.
We are also working with faculty from the University of Illi-
nois at Chicago, Loyola University, the Illinois Institute of
Technology, and the City Colleges of Chicago in order to
evaluate the potential of this approach to integrating com-
putational thinking into the curriculum at their institutions.
A workshop in June 2010 will be conducted in order to bring
all participants together to assess the project and consider
what the next steps should be. Possible avenues for further
work include expanding this approach more broadly at De-
Paul University, perhaps by making computational thinking
a formal part of the Liberal Studies Program, and imple-
menting this approach at other types of institutions, whether
with our current partners or other interested universities and
colleges.
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